

New NOx Removal Process from Exhaust Gas in Glass Furnace ~PCHP de-NOx System~

Ryota Tsuji

Nihon Yamamura Glass Co.,Ltd.

🛈 NIHON YAMAMURA GLASS CO.,LTD.

About Glass Bottle Production of Nihon Yamamura Glass

Mission of Environmental Affairs office

🗘 NIHON YAMAMURA GLASS CO.,LTD.

Exhaust Gas Treatment System

Exhaust Gas Treatment System

*Both systems do not include de-NOx system.

2015/10/21

🔰 NIHON YAMAMURA GLASS CO.,LTD.

About de-NOx

NOx Emission Regulation

Japan			USA	Germany	Korea	China
Country	Local (Sagamihara)	Local (Harima)	Local (California)	Country	Country	Country
450ppm	240ppm	290ppm	240ppm	121ppm	157ppm	167ppm

*For comparison purpose,

parameters used to calculate emission regulations are adjusted to match Japan regulation

As global environmental problems increase, NOx emission regulation is expected to become more stringent for exhaust gas from glass melting furnace.

NOx Removal Method (SCR)

Selective Catalytic Reduction Method(SCR)

SCRThese side reaction, including dust develops
catalyst poison and clogging problems.
 \rightarrow SCR is difficult to use for de-NOx in glass
melting furnaces.

2015/10/21

🛈 NIHON YAMAMURA GLASS CO.,LTD.

NOx Removal Method (Low Air Combstion)

Formation mechanism of thermal NOx

 $N_2 + O \Leftrightarrow NO + N$ $O_2 + N \Leftrightarrow NO + O$ $N + OH \Leftrightarrow NO + H$ Low air combustion can decrease NOx.

However, low air ratio combustion causes incomplete combustion.

2015/10/21

🔰 NIHON YAMAMURA GLASS CO.,LTD.

NYG developed a new technology.

Plasma and Chemical Hybrid Process ~PCHP Process~

Simultaneous de-SOx, de-NOx technology
 De-NO_x technology without the use of catalysts.

Since 2011, started Collaborative investigation with Osaka Prefecture University

Out line of Plasma Chemical Hybrid Process

Simultaneous de-SOx, de-NOx technology ↓
■ Plasma Process (O₂+O → O₃, NO+O₃ → NO₂+O₂)
■ De-SOx Process (SO₂+2NaOH → Na₂SO₃+H₂O)
■ Chemical Process (2NO₂+4Na₂SO₃→N2+4Na₂SO₄)

PCHP

High concentration of SOx and existence of adhesive dust do not affect.

Low maintenance. Applied easily into existing exhaust gas treatment equipment. → Reducing initial and running cost compared to installing SCR.

Requirement with installing PCHP in glass furnace

Temperature of exhaust gas at the entrance of the system 300~450°C.

(The O₃ is broken down to O₂ in temperatures of more than 150°C, losing effectiveness in NO oxidation.)

Temperature of exhaust gas should be cooled to less than 100°C

Focus of this development

To form a localized low-temperature area by spraying water before introducing the O₃.

🛈 NIHON YAMAMURA GLASS CO.,LTD.

Demonstration at the wet type system

2013.6 Harima plant (Wet Type System)

Demonstration Results for Wet Type System

In wet type exhaust gas treatment system, it was concluded that application of the PCHP to an actual exhaust gas of glass furnace is highly effective.

2015/10/21

Current development status

Demonstration at the Semi-Dry type exhaust gas treatment system

To succeed demonstration of the semi-dry type system

NYG has to achieve two items concurrently.

- (1) Formation of localized low-temperature area lower than 100°C
- (2) Maintain temperature of outlet exhaust gas at 200°C

- 2011 Collaborative investigation started with Osaka Prefecture University
- 2012 Laboratory experiment
- 2013 Demonstration at the Wet Type system (Success)
- 2014 Demonstration at the Semi-dry type system (Trial 1)

Conclusion

2015 Demonstration at the semi-dry type system (Trial 2)

		2013.6	2014.8	2015.8	2015.12
Plant		Harima	Tokyo	Tokyo	Tokyo
Treatment Type		Wet	Semi-dry	Semi-dry	Semi-dry
Reaction Efficiency	Plasma (ΔNO/injectedO ₃)	86%	57%	80%	Trial 3
	Total (ΔNOx/injectedO ₃)	86%	5%	30%	Trial 3

The results show that there is still room for improvements

2015 Demonstration at the semi-dry type system (Trial 3)

20XX NYG will push forward with the commercialization of the de-NOx equipment for Semi-dry Type Exhaust Gas Treatment System.

2015/10/21

Thank you very much!

Acknowledgement Osaka Prefecture University

Clear Blue Sky

2015/10/21

NEW TRANSFORME