ELECTROGLASS England

The Electric Melting Specialists

The 39th ASEAN Glass Conference, Cebu, Philippines, October 2015

Conference Theme

Glass Technology and Innovation: Driving Growth in Traditional and New Markets

Minimising energy usage

Minimising energy cost

 key priorities in an energy intensive process

Electricity in Glass Making ... often the Low-Cost Option

Richard Stormont

Managing Director Electroglass Ltd

Teannac Teannac

Typical Gas and Electricity Costs per Kilowatt-Hour

Gas cost US Cents per kWh Electricity cost US Cents per kWh

Dats Carnes Teapure

Process energy efficiency is the key

Electrical energy in glass melting and conditioning

All-Electric Melting Electric Boosting in fuel-fired furnaces Electric Distributors and Forehearths

Electrical energy in glass melting and conditioning

All-Electric Melting

Electric Boosting in fuel-fired furnaces

Electric Distributors and Forehearths

All-Electric Melting

The Batch Blanket of an All-Electric Furnace

Capacity Tonnes/Day

Capacity Tonnes/Day

Ratio of Gas Furnace to Electric Furnace Energy Consumption

Where the cost of electricity per unit of energy is about 3 times the cost of the same amount of gas energy, or less, electric melting is likely to be the economic choice for furnaces up to about 40 tonnes/day.

Electrical energy in glass melting and conditioning

All-Electric Melting

Electric Boosting in fuel-fired furnaces

Electric Distributors and Forehearths

ELECTROGLASS CCC BOOST SYSTEMS Typical Performance Data: Boost KW per extra Tonne/Day

20 kW of continuous boost power input per extra tonne/day.
Equivalent to 480 kW-hours of energy per tonne of glass, or
413 kCals per kg of glass.

If electricity is 3 times the cost of gas per unit of energy, and your unboosted furnace is using more than 1240 kCals per kg of glass, the glass from the boost system is cheaper than the glass from gas.

Electrical energy in glass melting and conditioning

All-Electric Melting

Electric Boosting in fuel-fired furnaces

Electric Distributors and Forehearths

ELECTROGLASS All-Electric Forehearths

All-Electric Forehearths

High Efficiency Insulation for Minimum Losses

All-Electric Forehearths

Conversion of 2 Forehearths from Gas Heating to Electric

FOREHEARTH 1:2 36'' WIDE			FOREHEARTH 1:1 48'' WIDE		
Date	12/21	12/22	Date	12/21	12/22
PULL(T/D)	57.2	56.8	PULL(T/D)	73.2	71.8
GLASS COLOUR	E.G	E.G	GLASS COLOUR	E.G	E.G
power(KVA)			KVA		
Rear	4.3	4.5	Rear Left	10.4	8.7
Middle	9.4	10.3	Rear Right	6.4	3.6
Conditioning	2.2	2.4	Middle Left	10.7	10.4
Electrodes Left	3.8	3.8	Middle Right	11.3	11.6
Electrodes Right	3.9	3.9	Conditioning	1.9	2.3
TOTAL POWER	23.6	24.9	Electrodes Left	3.6	3.1
			Electrodes Right	3.7	3.2
			TOTAL POWER	48	42.9

All-Electric Distributor

Electrical energy in glass melting and conditioning

All-Electric Melting

Highly Energy Efficient Lower Melting Energy Costs in smaller furnaces Technology of Choice for Volatile Glasses Environmentally Friendly

Electric Boosting in fuel-fired furnaces

Highly Energy Efficient Maintains Maximum Energy Efficiency at Reduced Pull Reduces Total Energy Consumption per kg. of Glass Can Reduce Total Energy Cost per kg. of Glass

Electric Distributors and Forehearths

Highly Energy Efficient Can Reduce Gas Energy Costs by 60% to 90% in many cases Excellent Temperature Control and Fast Response Minimal Maintenance

Energy is Expensive -

Thank You!

ELECTROGLASS

England

