

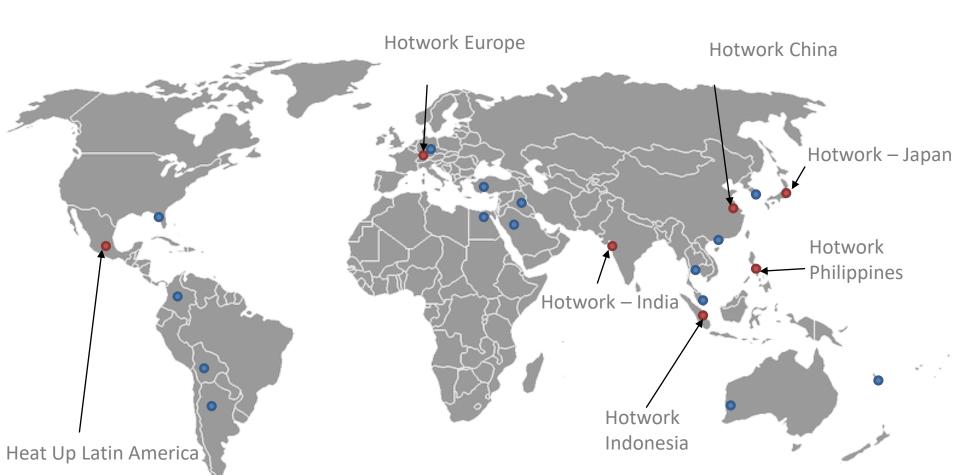
43rd ASEAN GLASS CONFERENCE

Glass: Inspiring New Frontiers of Development

Benjamin Köster

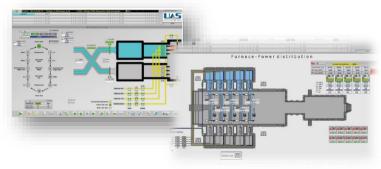
Furnace Draining

- -Environmentally friendly
- -full recycling of glass cullet
- -full recycling of water
- -highest safety standards / procedures
- -high safety due to use of cooled water
- -fully closed circuit, no overflow
- -plug and play installation
- -all equipment tested and certified


Furnace Heat Up

-The "Hotwork" method is worldwide standard
-Over 1.000 successful Furnace Heat Ups and Draining's
-Engineers with over 15 years of experience
-Senior Engineers with over 25 years of experience
-Experienced with all types of furnaces:
-Float/Container/Fiber/LCD/Electric/Oxy-fuel/Special Glass
-International Crews
-Over 16 spoken languages

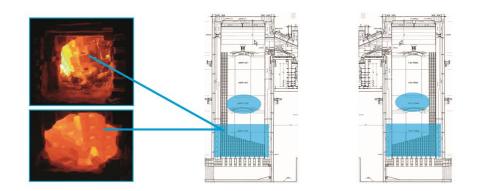
Being an International company, we reach out to any location worldwide... doesn't matter if its in the Jungle, Dessert or the cold north of Siberia.



Innovative Combustion Systems

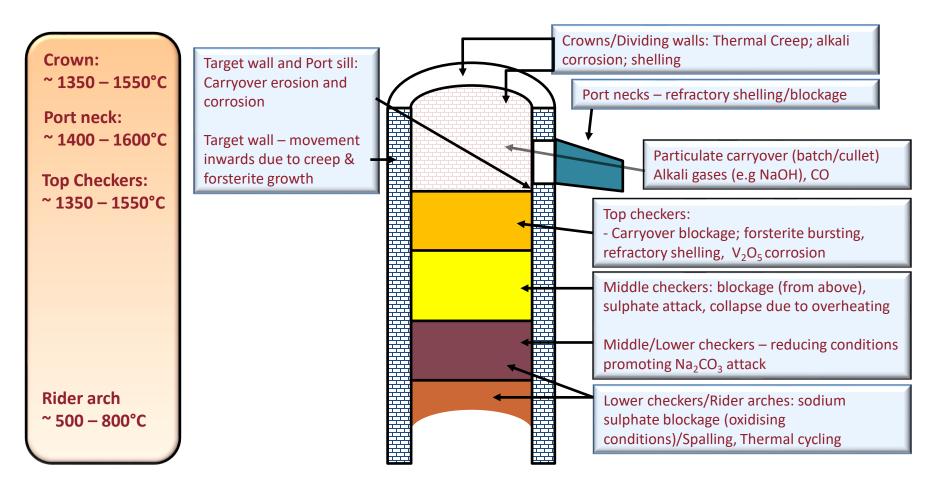
Control Skids

Furnace Controls / DCS


Regenerator Repair without production loss, possible?

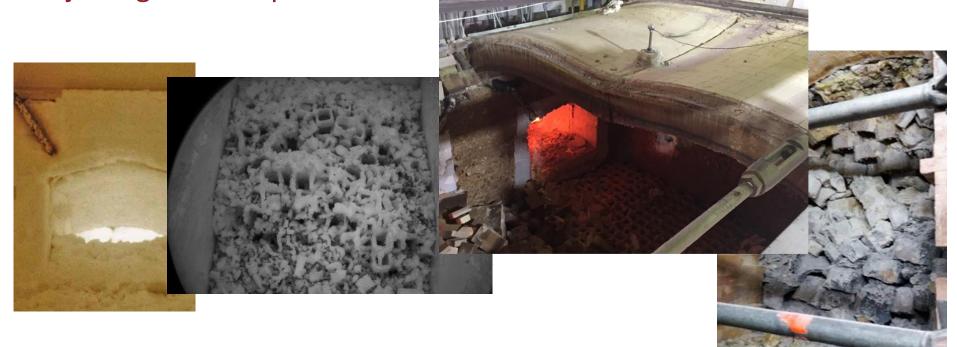
Regenerator Repair without production loss, possible?

Correct regenerator function is vital for efficient furnace operation


Regenerator checker blockage and collapses result in:

- Increased gas consumption
- Increased furnace pressure
- Increased refractory corrosion and potential for defects
- Reduced furnace pull and thermal efficiency
- Increased costs....

Regenerators – main issues


Regenerators - useful process variables to monitor

- Regenerator crown temperatures (daily linked to SCADA)
- Rider arch/lower chamber temperatures (daily linked to SCADA)
- Chimney damper position/OP% (daily) is OP% increasing (suddenly/gradually)?
- Reversal damper operation reversing and sealing correctly (weekly)
 - Procedure to follow in the event of prolonged reversal failure ?
- External structure visual/thermographic inspection for hotspots, cracks, sting-out
- Upper and lower chamber pressure; firing and non-firing side (every 2 months)
- Waste gas combustion (manual) analysis O₂, CO, NOx (weekly/pull change/colour change)
- Smoke/flames at the rider arches?
- Visual inspection of port necks, upper chamber and top checkers (weekly)
- Radiation pattern in regenerator bases (monthly visual mirror inspection/mapping)
 - Any evidence of broken checker bricks?
- Endoscope inspection of upper chamber structure and checkers (6-12 months)
- Establish baseline trends and monitor regenerator health!

So, what are the options when you face major regenerator problems?

Option 1: Do nothing.....

Probable results:

- Further deterioration of the checker pack leading to premature furnace shutdown.
- Increasing difficulty in controlling furnace pressure and combustion.
- Pull reductions required.
- NO_x, SO_x, CO emissions increase.
- Glass quality reduction.
- Difficulty in meeting production orders.
- Unhappy management and customers....

Option 2: checker removal

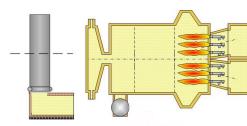
- Hot removal of collapsed checker layers/channel creation
- Only helpful if the first 2-3 course are blocked and access available
- Advantages:
 - Low cost option
 - Fast implementation.
- Disadvantages:
 - Reduced regenerator efficiency and increased energy cost.
 - Short term solution (middle pack exposed to higher temperature, carry over attacks etc.)
 - Increased emissions
 - Increased waste gas temperatures

Option 3: Furnace hot-hold and regenerator repair (e.g. checkers, crown)

- Furnace temperatures are held in the range 1200-1300°C for the duration of the repair using high velocity burners
- Typical repair duration for an end-fired furnace is 17 to 24 days depending on size, access and scope of repair
- Regenerators are isolated from the furnace, cooled down and repaired accordingly

Advantages:

• Re-establish regenerator integrity and restores design thermal efficiency


Disadvantages:

- Increased capital expenditure
- No production during the regenerator repair period
- Difficulty in meeting production orders

Option 4: Temporary oxygen-firing conversion and regenerator repair

Furnace is converted to oxygen-firing for the duration of the checker repair

- Typical repair duration for an end-fired furnace is 17 to 24 days depending on size, access and scope of repair
- Furnace temperatures are maintained at normal production settings to allow continued production during the regenerator repair
- Regenerators are isolated from the furnace, cooled down and repaired accordingly

Advantages:

- Re-establish regenerator integrity and restore design thermal efficiency
- Maintain production output and glass quality at normal levels
- Allows a fast response to emergency situations
- Can be used on a longer term basis if refractory materials are not immediately available **Disadvantages:**
- May not be justifiable financially, depending on post-repair campaign life expectations

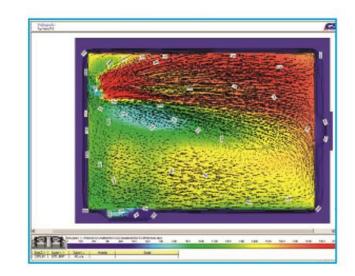
Why Oxygen firing is suitable to regenerator repairs

Increased Flame Temperature vs. normal air-fuel combustion

- Flame temperature is determined by calorific value of the fuel and the mass of waste gases generated from the combustion processes
- Compared to air-fuel combustion, oxy-fuel combustion generates a <u>much lower mass of waste</u> gases (and can also be exhausted via temporary flues used in the repairs)
- This means that flame temperatures are higher with oxy-fuel firing compared to air-fuel firing

Flame temperature comparisons (stoichiometric combustion)

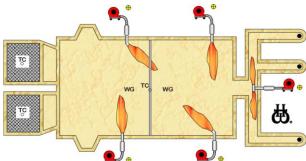
- Natural gas and ambient (20°C) air: ~ 1950°C
- Natural gas and preheated (1300°C) air: ~2400°C
- Natural gas and ambient (20°C) oxygen: ~2800°C
- So, with oxy-fuel firing we don't need preheat as we do with the combustion air
- Perfect when we don't have the regenerators available for preheating!



Oxy-fuel burner system – underport firing

Regulating Oxygen Burners compatible with ~95% of existing underport firing configurations

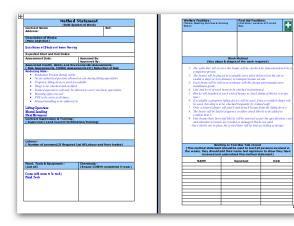
Regulating Oxygen Burners Good flame coverage, Low Nox Adjustable flame pattern

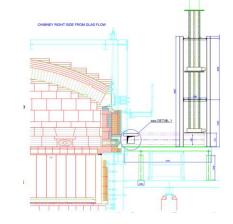


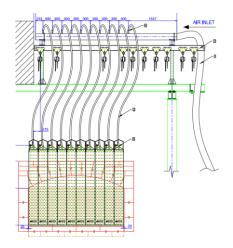
Oxy-fuel burner system – underport firing

- Oxygen Burners normally utilise existing plant natural gas line to connect to burners.
- Alternatively a dedicated Gas/LPG station can be supplied
- Oxygen Burners also compatible with fuel oil
- In an emergency situation, maintain the furnace with heat up burner and hot-hold at short notice, whilst Oxygen equipment and supply are organised
 - Our group have hot hold burner equipment available at 10 Global locations, also in Mexico

Simple comparison – Oxygen solution vs Hot hold

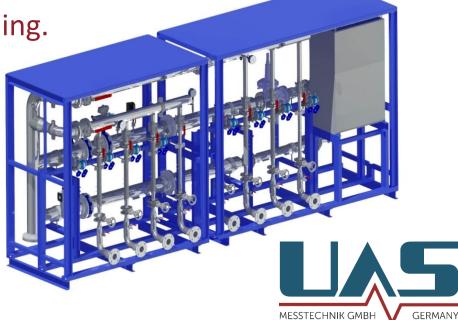

OXYGEN SOLUTION RUNNING COST VS SALES			HOT HOLD RUNNING COST VS SALES		
ITEM	QUANTITY	UNIT	ITEM	QUANTITY	UNIT
GAS	710	NM3/HR	GAS	600	NM3/HR
OXYGEN	1600	NM3/HR	COMBUSTION AIR	0	AIR FROM HV BURNERS
GAS COST	€0.22	EUROS/NM3	GAS COST	€0.22	EUROS/NM3
GLASS PULL	180	TONS/DAY	GLASS PULL	180	TONS/DAY
GLASS SALE	408	EUROS/TON	GLASS SALE	-408	EUROS/TON (NEGATIVE, NO PRODUCTION)
OXYGEN COST	€0.16	EUROS/NM3	REPAIR COST (EQUIPMENT + LABOUR)	€262,000.00	
REPAIR COST (EQUIPMENT + LABOUR)	€480,000	EUROS - 24 DAY REPAIR DURATION	REFRACTORY COST	€250,000.00	
REFRACTORY COST	€250,000	EUROS			
DAILY OXY + GAS	€9,739	DAILY GAS + OXY COST	DAILY GAS COST	€ 3,168.00	DAILY GAS COST
TOTAL OXY + GAS	€233,741	24 DAY REPAIR PERIOD	TOTAL GAS COST	€ 76,032.00	GAS COST 24 DAY REPAIR PERIOD
GLASS SALES VALUE PER DAY	€73,440	EURO	LOST GLASS SALES VALUE PER DAY	-€73,440.00	EURO
GLASS SALES VALUE - 24 DAY REPAIR	€1,762,560	EURO	LOST GLASS SALES VALUE 24 DAY REPAIR	-€1,762,560.00	EURO
GLASS SALES MINUS REPAIR COSTS	€798,819	EURO	LOST GLASS SALES PLUS REPAIR COSTS	-€2,350,592.00	EURO





Stage 1: Scope definition Engineering, method statements and

risk assessments



Stage 2: Oxygen storage and station

commissioning, production and safety

training.

Stage 3: Temporary exhaust flue installation

Stage 4A: Port neck isolation with dampers

Stage 4B: Regenerator chamber cooldown;

Stage 4C: Port neck insulation

Stage 4D: Transition to oxygen firing – production support and burner optimisation

Stage 5: Demolition during production

- **Stage 6:** Rebuilding checker/Regenerator
- Stage 7: Heat up of regenerator chamber
- Stage 8: Port neck damper removal and
- transition from Oxygen to main fuel firing
- Stage 9: Resealing of regenerator
- expansions and joints

Oxygen firing regenerator repair examples

	Furnace A	Furnace B	
Furnace Type	Container	Container	
Regenerator type	End fired/double pass	End fired/single pass	
Repair Type	Emergency:Oxy-conversion	Planned: Oxy-conversion	
Pre-repair pull (design)	340 tpd	440 tpd	
Pull during repair	260 tpd*	440 tpd	
Chambers repaired	2 (Left and right)	2 (left and right)	
Scope of repairs	Crowns/target walls/dividing wall/rider arches/checkers	Crowns/endwalls/innerwalls and checkers	
Repair duration (Cooldown/demolition/installation/ heat-up)	14 days*	21 days	

* Furnace A ran for 6 months on oxygen prior to regenerator repair. LPG supply restrictions at site meant that furnace had to run at reduced load during repair period. Alternative to repair was a furnace cold repair

Turn Key Solution

- Unique collaboration between Hotwork International, Lizmontagens Melting & Services and the Linde Group allows us to provide a turn-key solution for oxygen conversion and regenerator repair, leveraging the core-competencies of each company:
- Lizmontagens Melting and Services Project management, engineering, materials refractory demolition and installation services.
- **Hotwork International** Oxygen combustion system, combustion engineering, hold hot, cooldown and heat-up management, production support.
- Linde Group Oxygen supply including temporary cryogenic storage facilities, vaporiser, piping, distribution and oxygen delivery.

L I Z M O N T A G E N S Melting & Services

Regenerator Repair without production loss, possible?

Yes!

Thanks for Listening

Special Thanks to: Mike Rose, Gianni Carbone, Matthias Görisch