

GLASS MELTING TECHNOLOGY

Electric Melting Technologies

Lecturer: Dipl. Ing. Lars Biennek

Head of Technology

HORN Glass Industries AG

Author: Dipl. Ing. Lars Biennek

Content

1. Introduction into the all-electric melting process

- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Basics of the all-electric melting process (cold top)

- Vertical melting process from the top down to the bottom (throat)
- Batch layer covers the entire glass bath and works as an thermal insulator
- The batch layer needs to bear a certain permeability for the gases from the batch decomposition
- Refining agents such as sulphur, chlorine, fluorine are recycled in the batch layer

Batch layer

- Most important prerequisite is a uniform and stable batch layer
 - Stability = f (melting rate)
 - Stability = f (raw materials, refining agents)
 - Stability = f (energy density distribution)
- Released gas from chemical reactions and rising bubbles have to penetrate the batch layer
- Cullet share of 30...60 % for minimum energy consumption depending on the glass

Cold-top melting process

[1] Dr. Linz, Phd Electric melting of Glass

Temperature and energy fields

- Comparable high and homogeneous temperature level is giving reason for possible high specific melting rate
- Homogenous energy density fields under consideration of fixed convection by electrode position
 → too large distance between electrodes to be avoided!
- Large temperature and density gradient below the batch blanket is a must for stabilizing the first melting zone

Top electrode

Top electrode

- Stabilization of batch layer, especially at low specific pull
- No penetration of refractories, hence lower corrosion
- Easy maintenance
- No interaction with metal introduction from external cullet, lower risk of furnace leakage

Advantages of all-electric melting

- lower investment cost
- Higher glass quality if proper designed
- less maintenance activities
- lower energy consumption
- Lowest CO₂ emission at plant site (batch-CO₂)
- Minimum air pollution, only bag filter necessary for dust emissions
- avoided problem with evaporation (knots, condensation of alkaline-borates in exhaust system)

Disadvantages of all-electric melting

- Shorter furnace campaign (50...70% lifetime compared to end-fired furnace)
- Less flexibility in daily pull changes (10% Steps)
- Less total flexibility in max/min pull (70...110%)
- Less cullet content possible (30...60%)

Something is wrong with the batch layer!?

After raw material adjustment it's perfect!

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Main characteristics:

Type of glass	Super flint
Seeds 0.1-0.25 mm	< 10 pcs
Pull	57 t/d
Melting surface	20 m2
Dimension	5 m
Specific melting rate	2.85 t/m2d
Depth of tank	1,9 m
Cullet content	38 %
Total power	2,570 kW
Specific energy consumption	1.05 kWh/kg
Upper temperature	1523°C
Exit temperature	1511°C
Furnace campaign	5 years
· · · · · · · · · · · · · · · · · · ·	·

- High convection flow, constant high temp level in the whole furnace
- Depth of 1900 mm and high temperature level excellent glass quality
- Min. Residence time 12 min (excluded batch layer)

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Main characteristics:

Type of furnace	Round	Round	Round with shelf
Pull	58 t/d	140 t/d	140 t/d
Melting surface	20 m2	50 m2	50 m2
Dimension	5 m	7.9 m	7.9 m
Depth of tank	1,9 m	1.9	2.55
Total power	2,570 kW	5,875 kW	6,055
Specifc energy consumption	1.05 kWh/kg	1.0 kWh/kg	1.04 kWh/kg
Upper temperature	1523°C	1522 °C	1501 °C
Exit temperature	1511°C	1507 °C	1493 °C

Main characteristics:

Electrical connection – 3 Phase 120°:

Electrical connection – 3 Phase 120°:

Basic modelling results:

Scale-up of a round furnace significantly decreases the demanded glass quality!!!

Main characteristics:

Type of furnace	Round	Rectangular	Rectangular with shelf
Pull	58 t/d	140 t/d	140 t/d
Melting surface	20 m2	50 m2	50 m2
Dimension	5 m	5 x 10 m	5 x 10 m
Depth of tank	1.9 m	1.9	2.55
Total power	2,570 kW	5,955 kW	6,060 kW
Specific energy consumption	1.05 kWh/kg	1.02 kWh/kg	1.04 kWh/kg
Upper temperature	1523°C	1522 °C	1502 °C
Exit temperature	1511°C	1507 °C	1470 °C

Main characteristics NEU:

Electrical connection -3 Phase \rightarrow 2 Phase (SCOTT) 90°:

Electrical connection -3 Phase \rightarrow 2 Phase (SCOTT) 90°:

Basic modelling results:

Scale-up by means of an rectangular furnace significantly increases the demanded glass quality!!!

An rectangular furnace is the reasonable version to ensure the demanded glass quality !!! With shelf or without shelf?

Summary of best solutions:

Residence time	0,22h	0,12h	0,51h	0,54h	1,39h
Sand dissolution index	0,7	0,4	2,0	1,4	3,1
Bubble grow index	10,1	5,2	30,8	17,8	34,9
Maintenance	++	++	++	-	-
Complexity	++	++	++	-	-

Summary of best solutions:

An rectangular furnace WIHTOUT SHELF is the reasonable version for good glass quality, simple maintenance!!! c

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Adjustment of amber under cold-top conditions:

Amber colour can be easily adjusted under cold top conditions whereby the amount of carbon an Na₂SO₄ differs from hot top conditions

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Economical comparison

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Future outlook

1. All-electric furnace with a capacity of 300 tpd

- Rectangular base as perfect basis for scale-up
- Dimensions of melting surface 16.5m x 6.5m
- 4-5 electrode heating modules

2. Two all-electric furnace with a capacity of 150 tpd

- No need for scale-up
- One joint distributor
- Mixing of the two melts at the entrance of the forehearths

3. Modelling of amber and green glass

Content

- 1. Introduction into the all-electric melting process
- 2. Existing container glass furnace for super flint 60 tpd
- 3. Modelling results super flint 140 tpd
- 4. Possibility of melting amber glass under cold-top condition
- 5. Economical comparison between an end-port fired furnace and an all-electric furnace
- 6. Future outlook
- 7. Conclusion

Is the electric power a possible solution for green glass melting process?

What about the energy suppliers?

Are they ready to supply reliable CO₂-free electricity for an reasonable price?

THANK YOU FOR YOUR ATTENTION!

