## Glass Furnaces' Regenerators Performance and Optimization For Energy Savings

Sebastien Bourdonnais Bali, September 17th 2013

## SAINT-GOBAIN

## **Outline**

Energy savings in glass furnaces: what is at stake?

Thermal fundamentals for regenerators

Regenerators solutions

Industrial references & service offers



## Energy Savings in Glass Furnaces: What is at Stake?



## **Energy in The Glass Industry**



## Importance of heat recovery from fumes



## Importance of high efficiency packing



Higher efficiency (E) could be used to reduce fuel quantity required

Or to increase the pull (higher energy supply)

## Magnitude of fuel savings





Efficient regenerator is an important contributor for a greener process:

- Less fuel consumption means fewer emissions such as NO<sub>x</sub> and CO<sub>2</sub>
- Exhaust fumes are released colder in atmosphere
- Particules are filtred and kept inside....etc...

## Thermal Fundamentals for Regenerators









## **Materials Specific Surfaces**

| Shape | Name                        | Thickness | Typical Flue Size | Specific Surface                    |
|-------|-----------------------------|-----------|-------------------|-------------------------------------|
|       | Cruciform<br>Type 8         | 30 mm     | 150 x 60 mm       | 26.0 m <sup>2</sup> /m <sup>3</sup> |
|       | Cruciform<br>Type 4         | 30 mm     | 150 x 150 mm      | 18.1 m <sup>2</sup> /m <sup>3</sup> |
|       | Cruciform<br>Type 3         | 30 mm     | 150 x 150 mm      | 15.5 m²/m³                          |
|       | Cruciform<br>Type 6         | 30 mm     | 330 x 330 mm      | 9.3 m²/m³                           |
|       | Chimney Block<br>TL         | 40 mm     | 140 x 140 mm      | 16.9 m²/m³                          |
|       | Chimney Block<br>TG         | 40 mm     | 140 x 140 mm      | 15.9 m²/m³                          |
|       | Bricks<br>(Basket<br>Weave) | 64 mm     | 150 x 150 mm      | 11.0 m <sup>2</sup> /m <sup>3</sup> |
|       |                             |           | SAINT-GOEAIN      |                                     |

## Heat Exchange Law



## Heat Exchange Coefficient



- t = half cycle
- e = wall thickness
- $\lambda$  = heat conductivity
- *Hf* = heat exchange coefficient fumes refractory

SAINT-GOBAIN SEFPRO

Ha = heat exchange coefficient refractory - air



## Fumes cycle Hf1 ≈ Hf2 Air cycle Ha1 > Ha2

Cruciforms are more efficient in terms of energy restitution

## Checker surface as a function of the height



## **Open channels versus closed channels**



Open channels lead to and more homogeneous flow repartition less "cold spot"

## From pilot plant to performance prediction



Regenerator pilot plant for Cruciform development

|                        |           | [PRECIAL PROJ          |                                  |
|------------------------|-----------|------------------------|----------------------------------|
| Castomen               | M0-410T   | calcul à 110 T/J       | Current Blac                     |
| material               | CRN004    | ER 1/82 RX type 4      | 1 / 2                            |
| Heat(J/m3))            | 3 766 500 | Conductivity (W/m//%)a | 4,682 Area Effect Vert           |
| Packing                |           | Coordonnes T4          | 1.00 1.250 1.20                  |
| MATERIAL               | Choice    | Pac                    | king type choice                 |
| CRX064 168             | 2 RX T4   | <u>*</u> 07 -          | Cruciformes T4                   |
| Height.a               | 6300,80   | Nor af Flues           | Used Height(mm)                  |
| Lengtha                | 4250,00   | 23 12 276              | Used length(mm)i 4170.00         |
| Widthat                | 2270,00   | Number of course 15    | Used width(mm)) 2190,90          |
| Flue                   | 150,40    | Honsontal area 0,701   | Hydewslie Diam.(mm) 112.18       |
| Thickness              | 30,00     | 200                    | Equivalent thickness(met): 45,28 |
| Long-4:                | 130,00    | and a                  | Port width                       |
| Haut-L                 | 430,00    |                        | Gas passage.sect(m?) 6.27        |
| Long-2                 | 150,00    | SAMPAGE S              | Total exchange area(m2): 911,217 |
| Haut-2:                | 430,00    | 2400.00                | Exchange sera(m2/m3))            |
| Porif gaps             |           |                        | Flow TURBULENT                   |
| Check walfis           | 5,80      | The last state         | Colord News                      |
| Contract of the second | 10.00     | ENIL                   | Calcul Next                      |

State of the art thermal simulation software



Customized thermal performance simulation and report with benchmark between several solutions

## Pilot scale test unit: unique in the world

- « GRETh » is an independent research center, specialized in thermal exchanges, belonging to the CEA (French National Agency for Nuclear Power)
- The test loop has been designed to reproduce industrial regenerators conditions :
  - Temperature levels
  - Height (to combine natural and forced convection)



## State of the art numerical simulation



## **On-site measurements VS simulations**

Our numerical approach has been validated with various on site thermal measurements with good fit

| Measured Calculated   |                     | FUMES |      | AIR  |       |      |      |
|-----------------------|---------------------|-------|------|------|-------|------|------|
|                       |                     | Entry | Exit | Exit | Entry | Exit | Exit |
| Float Lux. Port 1     | Cruciforms Type 2   | 1551  | 524  | 540  | 160   | 1385 | 1352 |
| Float Lux. Port 2     | Cruciforms Type 2   | 1579  | 623  | 645  | 178   | 1397 | 1368 |
| End Fired Spain Right | Cruciforms Type 3&6 | 1236  | 635  | 608  | 268   | 1136 | 1119 |
| End Fired Spain Left  | Cruciforms Type 3&6 | 1225  | 622  | 596  | 249   | 1106 | 1104 |
| Float Germany         | Cruciforms Type 2   | 1406  | 634  | 662  | 148   | 1217 | 1197 |
| Float Germany         | Chimney Blocks      | 1388  | 576  | 596  | 175   | 1165 | 1155 |
| Container USA         | Cruciforms Type 3&4 | 1392  | 566  | 543  | 101   | 1290 | 1318 |
| Container USA         | Maerz Bricks        | 1359  | 505  | 524  | 96    | 1201 | 1191 |
| Container Germany 1   | Cruciforms Type 3&4 | 1460  | 575  | 551  | 75    | 1385 | 1405 |
| Container Germany 2   | Cruciforms Type 3&4 | 1445  | 525  | 506  | 60    | 1365 | 1379 |
|                       |                     |       |      |      |       |      |      |

## **Regenerators Solutions**



# SAINT-GOBAIN

## **Some checkers common solutions**

Maintenance: HARD





#### CRUCIFORMS

Efficiency: HIGHEST Lifetime: 15+ y Installation: FAST Maintenance: EASY



#### **CHIMNEY BLOCKS**

Efficiency: MODERATE Lifetime: VARIABLE 5-10 y Installation: FAST Maintenance: DIFFICULT

## **Beyond thermal performance**

## Critical criteria

• Lifetime: corrosion and mechanical resistance

## Secondary criteria

- Installation: easy, reliable and fast
- Maintenance: partial repair, thermal cleaning

To reach the best technical and economical compromise





## Lifetime criteria : typical checker stresses



#### CHECKERWORK

- Mecanisms are function of
  - Carry-over quantity and nature
  - Fuel type and purity

#### Mecanisms change with

- Temperature level
- Atmosphere (oxydizing/reducing)
- Height in the checkerwork
- ABRASION / EROSION
  CHEMICAL ATTACKS
  CONDENSATION
  MECHANICAL LOAD
  THERMAL CYCLING

# **Cruciforms range: 40 years of innovations to meet market expectations**

Wide range of cruciform designs



**as well as materials for specific applications AZS** ER 1682 RX, Alumina ER 5312 RX, Spinel ER 55XX RX

## **Cruciforms range: standard design**



TOP & HOT ZONE: abrasion by gas and carryover particules. High alumina provides excellent resistance to these corrosions.

CONDENSATION ZONE: chemical resistance to various corrosive agent such as sodium sulfates or hydroxides. Fused cast spinel is a must.

BOTTOM PART: area mainly exposed to
 mechanical load of the package and thermal cycling (cold air entrance).

## Latest evolution: Type 8 for top courses



- Type 8 « half channels » patented design
  - For high performance regenerators
  - Significant fuel consumption reduction (from 2% to 8%)
  - Gaz emissions reduction as a consequence
  - Design has been allowed by fused casting process



## 'On site' Type 8 validation



Thermal balance comparison P3 vs P4



Embedded thermocouples at 6 different heights

Aspiration pyrometer for gas analysis

5 layers of Type 8 topping are located on Port 4 in a flat glass furnace

The performances of Port 4 and Port 3, once fully instrumented and monitored, have been compared

*Type 8* effect on industrial furnace reached +5% of regenerator efficiency vs standard



## Type 8 has already convinced the glass industry WW



## Full scale calculations on standard cases



## Industrial References Worldwide





## **Cruciforms application area**

Cruciforms solutions largely referenced worldwide in all sodalime furnaces technologies





MATERIAUX HAUTE PERFORMANCE

## **Wordwide leading reference**



- Since 2000, 170 000 tons sold
- More than 1 400 furnaces equipped in the world



## Industrial successes in container industry

#### 11% fuel savings (France)

## A L'INITIATIVE DE L'ADEME ET D'INDUSTRIES ET TECHNIQUES Les trophées des technologies économes et propres



Le 13 octobre, au salon Pollutec, six industriels ont recu le trophée Technologies économes et propres. Comme s'est plu à le souligner Claude Mandil, directeur général de 'énergie et des matières premilitar lar lauréats ont mon.



#### Improving regenerator efficiency 2% fuel savings (Portugal)

A new solution has been implemented in a large end port furnace for container glass. It led to an increase in efficiency with no other impact on furnace working conditions. By D. Lechevalier\*, A. Pinto\*\*, V. Domingues\*\*, O. Citti\*, M. Gaubil\*\*\*

nergy consumption reduction is an increasing concern within the glass industry. Surveys show an important spread of efficiency among many furnaces(1). Representing up to 20% of the glass production cost, the share of energy is increasing despite glass melting process optimisations. In addition to production cost, energy consumption drives the emission of heavily regulated NO, and SO, emissions. As a requirement for industry competitiveness and its environmental 10.1



▲ Fig 1. Type 3 ismooth, left] and Type & (corrugated, centrel and new Type 8 (right)

#### Final Profile 69

#### **Corrugated cruciform packing** in a glass furnace regenerator

**Project Objective** To demonstrate the energy benefits of using corrugated cruciform packing in a glass furnace regenerator.

Potential Users Glass manufacturers operating regenerative tank furnances:

Investment Cost £94,370 (1992 prices)

Savings Achieved 41.276 GJAvear, worth £79.880 (1993)

Payback Period 14 months.

Host Organisation Rockware Glass Ltd Headands Land Knottingley West Yorkshire WF11 OHP

Monitoring Contractor British Glass Northumberland Road Sheffield S10 2UA Tel No: 0742 686201 Fax No: 0742 681073 Mr W A Hartley

Equipment Manufacturer SEPR Ceramics Ltd Crompton Road

Darbyshire DE7 4BG Tel No: 0602 309555 Fax No: 0602 329789 Mr I Whittakor



The installation of a new type of regenerator packing has improved both combustion air pre-heat temperatures and the efficiency of fuel use on a furnace at Rockware Glass Ltd's Wheatley factory.

The new packing was one of a number of improvements incorporated during a furnace rebuild. Its corrugated cruciform design increased convective heatexchange coefficients within the recenerator, increased combustion air temperatures by 118°C and improved regenerator effi-ciency from 68.6% to 66.9%. The associated reduction in fuel consumption is close to

Over a one-year period the energy savings attributable to the new regenerator packing totalled 41,276 GJ/year. These were worth £79.880/year to the company at November 1993 prices, giving a payback period of 14 months

The reduction in fuel consumption helps to lower waste-gas volumes, and measurements showed that emissions concentral tions were all below the limits set for 2001 by the Environmental Protection Act.

<sup>66</sup>As a result of the success of this installation. this material has been used on two subsequent rebuilds with similar success.



#### 7.7% fuel savings (UK)







## **SEFPRO Services beyond products:**





- On site assistance and measurement
- Refractory expertise in R&D
- Thermal performance simulation
- .... And more!

## Conclusions



## Conclusions

- **Regenerators are key to control thermal efficiency**
- Specific surface and optimized design of checkers are the key
- Experimental and analytical tools led to the development of the cruciform range
- Payback can be precisely calculated taking into account the fuel savings generated
- New Type 8 for topping is a new step forward into efficiency improvement
- Cruciforms range offers a tailor-made experience meeting the right technical and financial positioning

SEFPRO

Some specificities may apply to your case : please contact your SEFPRO representative

## Thank you! dody.kurniawan@saint-gobain.com

sebastien.bourdonnais@saint-gobain.com

# SAINT-GOBAIN